Class

Chapter 33 Electric Fields and Potential

Exercises

33.1 Electric Fields (pages 665-666)

- 1. What is an electric field?
- Like a gravitational field, an electric field has both ________.
- 3. How can the magnitude of an electric field be measured?
- **4.** Is the following statement true or false? The direction of an electric field at any point, by convention, is the direction of the electrical force on a small *negative* test charge, placed at that point.
- **5.** Consider the electric field around a small positive charge. How can you describe the direction of the field?

33.2 Electric Field Lines (pages 666-667)

- 6. Since an electric field has both magnitude and direction, it is a
- 7. Is the following sentence true or false? In a vector representation of an electric field, the magnitude of an electric field is indicated by the length of the vector arrows. ______
- **8.** Electric fields can also be described by using field lines (or lines of force). In a field lines representation of an electric field, the field is weaker where the lines are ______.

Match the illustrations to the correct description.

- 9. _____ The field lines emanate from the positive charge and terminate on the negative charge.
- **10.** _____ Field lines are evenly spaced between two oppositely charged plates.
- **11.** _____ The field lines extend to infinity.

Chapter 33 Electric Fields and Potential

33.3 Electric Shielding (pages 668-669)

- **12.** If the charge on a conductor is not moving, the electric field inside the conductor is exactly ______.
- **13.** Circle the letter of each statement that is true about charged conductors.
 - a. The absence of an electric field within a conductor holding static charge arises from the inability of an electric field to penetrate metals.
 - b. The absence of an electric field comes about because free electrons within the conductor stop moving when the electric field is zero.
 - c. The charges arrange themselves to ensure a zero field within the material.
 - d. If the conductor is not spherical, then the charge distribution will not be uniform.
- **14.** Why are some electronic components and some cables encased in a metal covering?

33.4 Electrical Potential Energy (pages 669-670)

- **15.** Is the following sentence true or false? A charged object has potential energy by virtue of its location in an electric field.
- 16. Circle the letter of each statement that is true.
 - a. No work is required to push a charged particle against the electric field of a charged body.
 - b. The electrical potential energy of a charged particle decreases when work is done to push it against the electric field of something else that is charged.
 - c. The energy a charge has due to its location in an electric field is called electrical potential energy.
 - d. If a charge with electrical potential energy is released, its electrical potential energy will transform into kinetic energy.

33.5 Electric Potential (pages 670-671)

17. What is electric potential?

18. Is the following sentence true or false? Electric potential is *not* the same as electrical potential energy.

19. The SI unit of measurement for electric potential is the _____

Chapter 33 Electric Fields and Potential

20. Write an equation that expresses the relationship between volts, joules, and coulombs.

33.6 Electrical Energy Storage (pages 672-673)

- 22. What are two applications of capacitors?
- 23. The diagram shows a simple capacitor. Explain how the capacitor is charged.

- 24. A charged capacitor is discharged when a ______ is provided between the plates.
 25. The energy stored in a capacitor comes from the ______ done to charge it.
 33.7 The Van de Graaff Generator (pages 673–674)
 26. Is the following sentence true or false? In a Van de Graaff generator, as electrons leak off the belt and onto the conducting sphere, the electric field inside the sphere steadily increases in magnitude.
- 27. How can the voltage of a Van de Graaff generator be increased?

^{21.} What is voltage?